Publications

  • Löffelholz, M.; Weidner, J.; Hartmann, J.; Ostovari, H.; Osiewacz, J.; Engbers, S.; Ellendorff, B.; Junqueira, J. R. C., Weichert, K.; von der Assen, N.; Schuhmann, W.; Turek, T.
    Optimized Scalable CuB Catalyst with Promising Carbon Footprint for the Electrochemical CO2 Reduction to Ethylene
    Sustainable Chemistry for Climate Action (2023),
    doi.org/10.1016/j.scca.2023.100035

    Löffelholz, M.; Osiewacz, J.; Weseler, L.; Turek, T.
    Enhancing Carbon Efficiency in Electrochemical CO2 Reduction at Silver Gas Diffusion Electrodes: The Effect of Acidic Electrolytes Explained via TFFA Modeling
    Chem. Soc. (2023),
    doi.org/10.1149/1945-7111/ad0eba

    Dorner, I.; Röse, P.; Krewer, U.
    Dynamic vs. Stationary Analysis of Electrochemical Carbon Dioxide Reduction: Profound Differences in Local States
    ChemElectroChem (2023),
    doi.org/10.1002/celc.202300387

    Hoffmann, H.; Paulisch-Rinke, M. C.; Gernhard, M.; Jännsch, Y.; Timm, J.; Brandmeir, C.; Lechner, S.; Marschall, R.; Moos, R.; Manke, I.; Roth, C.
    Multi-scale morphology characterization of hierarchically porous silver foam electrodes for electrochemical CO2 reduction
    Communications Chemistry 6, Article number: 50 (2023),
    doi.org/10.1038/s42004-023-00847-z

    Hoffmann, H.; Kutter, M.; Osiewacz, J.; Paulisch-Rinke, M. C.; Lechner, S.; Ellendorff, B.; Hilgert, A.; Manke, I.; Turek, T.; Roth, C.
    Highly selective Ag foam gas diffusion electrodes for CO2 electroreduction by pulsed hydrogen bubble templation
    EES Catalysis (2023),
    doi.org/10.1039/D3EY00220A

    Baumgartner, L. M.; Goryachev, A.; Koopman, C. I.; Franzen, D.; Ellendorff, B.; Turek, T.; Vermaas, D. A.
    Electrowetting Limits Electrochemical CO2 Reduction in carbon-free Gas Diffusion Electrodes
    Energy Adv. (2023),
    doi.org/10.1039/D3YA00285C

    Junqueira, J. R. C.; Das, D.; Brix, A. C.; Dieckhöfer, S.; Weidner, J.; Wang, X.; Shi, J.; Schuhmann, W.
    Simultaneous anodic and cathodic formate production in a paired electrolyzer by CO2 reduction and glycerol oxidation
    ChemSusChem (2023), e202202349
    doi.org/10.1002/cssc.202202349

    Wilde, P.; Özden, A.; Winter, H.; Quast, T.; Weidner, J.; Dieckhöfer, S.; Junqueira, J. R. C.; Metzner, M.; Peter, W.; Leske, W.; Öhl, D.; Bobrowski, T.; Turek, T.; Schuhmann, W.
    Sprayed Ag gas-diffusion electrodes for the electrochemical reduction of CO2 to CO
    Appl. Res. 2 (2023), e202200081
    doi.org/10.1002/appl.202200081

    Milicic, T.; Sivasankaran, M.; Blümner, C.; Sorrentino, A.; Vidakovic-Koch, T.
    Pulsed Electrolysis: Explained
    Faraday Discussions (2023) accepted
    doi.org/

    Zivkovic, L.A.; Kandaswamy, S.; Sivasankaran, M.; Al-Shaibani, M.A.S.; Ritschel, T.K.S.; Vidakovic-Koch, T.
    Simulation and experimental files, datasets and equipment setup for "Nonlinear frequency response analysis of oxygen reduction reaction on silver in strong alkaline media"
    Resipository Edmont (2023)
    doi.org/10.17617/3.1GTTFE

    Zivkovic, L.A.; Kandaswamy, S.; Sivasankaran, M.; Al-Shaibani, M.A.S.; Ritschel, T.K.S.; Vidakovic-Koch, T.
    Nonlinear frequency response analysis of oxygen reduction reaction on silver in strong alkaline media
    Electrochimica Acta (2023) 142175
    doi.org/10.1016/j.electacta.2023.142175

    Osiewacz, J.; Löffelholz, M.; Weseler, L.; Turek, T.
    CO poisoning of silver gas diffusion electrodes in electrochemical CO2 reduction
    Electrochimica Acta 445 (2023) 142046
    doi.org/10.1016/j.electacta.2023.142046

    Bienen, B.; Paulisch, M.; Mager, T.; Osiewacz, J.; Nazari, M.; Osenberg, M.; Ellendorff, B.; Turek, T.; Nieken, U.; Manke, I.; Friedrich, K.A.
    Investigating the electrowetting of silver‐based gas‐diffusion electrodes during oxygen reduction reaction with electrochemical and optical methods
    Electrochemical Science Advances 3 (2023) e 2100158
    doi.org/10.1002/elsa.202100158

    Wang, X.; He, W.; Shi, J.; Junqueira, J. R. C.; Zhang, J.; Dieckhöfer, S.; Seisel, S.; Das, D.; Schuhmann, W.
    Ag-induced phase transition of Bi2O3 nanofibers for enhanced energy conversion efficiency towards formate in CO2 electroreduction
    Chem. Asian J. 17 (2023) e202201165
    doi.org/10.1002/asia.202201165

  • Wilde, P.; Özden, A.; Winter, H.; Quast, T.; Weidner, J.; Dieckhöfer, S.; Junqueira, J. R. C.; Metzner, M.; Peter, W.; Leske, W.; Öhl, D.; Bobrowski, T.; Turek, T.; Schuhmann, W.
    Sprayed Ag oxygen reduction reaction gas-diffusion electrodes for the electrocatalytic reduction of CO2 to CO
    Appl. Res. 2022 e202200081
    doi.org/10.1002/appl.202200081

    Wang, X.; Tomon, C.; Bobrowski, T.; Wilde, P.; Junqueira, J. R. C.; Quast, T.; He, W.; Sikdar, N.; Weidner, J.; Schuhmann, W.
    Gaining the freedom of scalable gas diffusion electrodes for the CO2 reduction reaction
    ChemElectroChem 9 (2022) e202200675
    doi.org/10.1002/celc.202200675

    Sikdar, N.; Junqueira, J. R. C.; Öhl, D.; Dieckhöfer, S.; Quast, T.; Braun, M.; Aiyappa, H. B.; Seisel, S.; Andronescu, C.; Schuhmann, W.
    Redox replacement of Ag on MOF-derived Cu/C-nanoparticles on gas diffusion electrodes for electrocatalytic CO2 reduction
    Chem. Eur. J. 28 (2022) e202104249
    doi.org/10.1002/chem.202104249

    Löffelholz, M.; Osiewacz, J.; Lüken, A.; Perrey, K.; Bulan, A.; Turek, T.
    Modeling electrochemical CO2 reduction at silver gas diffusion electrodes using a TFFA approach
    Chemical Engineering Journal 435 (2022) 134920
    doi.org./10.1016/j.cej.2022.134920

    Hoffmann, H.; Paulisch, M; Gebhard, M.; Osiewacz, J.; Kutter, M.; Hilger, A.; Arlt, T.; Kardjilov, N.; Ellendorff, B.; Beckmann, F.
    Developement of a Modular Operando Cell for X-ray Imaging of Strongly Absorbing Silver-Based Gas Diffusion Electrodes
    Journal of The Electrochemical Society 169 (2022) 044508
    doi.org/10.1149/1945-7111/ac6220

    Bienen, F.; Paulisch, M.C.; Mager, T.; Osiewacz, J.; Nazari, M.; Osenberg, M.; Ellendorff, B.; Turek, T.; Nieken, U.; Manke, I.; Friedrich, K.A.
    Investigating the electrowetting of silver-basedgas-diffusion electrodes during oxygen reduction reaction with electrochemical and optical methods
    Electrochem. Sci. Adv.(2022) e2100158
    doi.org/10.1002/elsa.202100158

  • Paulisch, M. C.; Gebhard, M.; Franzen, D.; Hilger, A.; Osenberg, M.; Marathe, S.; Rau, C.; Ellendorff, B.; Turek, T.; Roth, C.; Manke, I.
    Operando Synchrotron Imaging of Electrolyte Distribution in Silber-Based Gas Diffusion Electrodes During Oxygen Reduction Reaction in Highly Alkaline Media
    ACS Appl. Energy Mater. (2021) 4, 7497-7503
    doi.org/10.1021/acsaem.1c01524

    Junqueira, J. R. C.; O’Mara, P. B.; Wilde, P.; Benedetti, T. M.; Andronescu, C.; Tilley, R. D.; Gooding, J. J.; Schuhmann, W.
    Combining nanoconfinement in Ag core/porous Cu shell nanoparticles with gas diffusion electrodes for improved electrocatalytic carbon dioxide reduction
    ChemElectroChem, 8 (2021) e202100906
    doi.org/10.1002/celc.202100906

    Monteiro, M. C. O.; Dieckhöfer, S.; Bobrowski, T.; Quast, T.; Pavesi, D.; Koper, M. T. M.; Schuhmann, W.
    Probing the local activity of CO2 reduction on gold gas diffusion electrodes: effect of the catalyst loading and CO2 pressure
    Chem. Sci., 12 (2021) 15682-15690
    doi.org/10.1039/D1SC05519D

    Vidakovic-Koch, T.; Milicic, T.; Zivkovic, L.; Chan, H. S.; Krewer, Ulrike; Petkovska, M.
    Nonlinear Frequency Response Analysis: A Recent Review and Perspectives
    Current Opinion in Electrochemistry, 30 (2021) 100851
    doi.org/10.1016/j.coelec.2021.100851

    Song, Y.; Junquiera, J. R. C.; Sikdar, N.; Öhl, D.; Dieckhöfer, S.; Quast, T.; Seisel, S.; Masa, J.; Andronescu, C.; Schuhmann, W.
    B-Cu-Zn Gas Diffusion Electrodes for CO2 Electroreduction to C2+ Products at High Current Densities
    Angew. Chem. Int. Ed. 60 (2021) 9135-9141
    doi/full/10.1002/anie.202016898

    Sikdar, N.; Junquiera, J. R. C.; Dieckhöfer, S.; Quast, T.; Braun, M.; Song, Y.; Aiyappa, H. B.; Seisel, S.; Weidner, J.; Öhl, D.; Andronescu, C.; Schuhmann, W.
    A metal-organic framework derived CuxOyCz catalyst for electrochemical CO2 reduction and impact of local pH change
    Angew. Chem. Int. Ed. 60 (2021) 23427-23434
    doi.org/10.1002/anie.202108313

    Sikdar, N.; Junquiera, J. R. C.; Dieckhöfer, S.; Quast, T.; Braun, M.; Song, Y.; Aiyappa, H. B.; Seisel, S.; Weidner, J.; Öhl, D.; Andronescu, C.; Schuhmann, W.
    Ein MOF-basierter CuxOyCz-Katalysator für die elektrochemische CO2-Reduktion und die Auswirkungen der lokalen pH-Änderung
    Angew. Chem. 133 (2021) 23616-23624
    doi/abs/10.1002/ange.202108313

    Franzen, D.; Krause, C.; Turek, T.
    Cover Feature: Experimental and Model-Based Analysis of Electrolyte Intrusion Depth in Silver-Based Gas Diffusion Electrodes (ChemElectroChem 12/2021)
    ChemElectroChem 8 (2021) 2151-2151
    doi/10.1002/celc.202100620

    Franzen, D.; Krause, C.; Turek, T.
    Experimental and Model-Based Analysis of Electrolyte Intrusion Depth in Silver-Based Gas Diffusion Electrodes
    ChemElectroChem 8 (2021) 2186-2192
    doi.org/10.1002/celc.202100278

    Etzold, B.J.M.; Krewer, U.; Thiele, S.; Dreizler, A.; Klemm, E.; Turek, T.
    Understanding the Activity Transport Nexus in water and CO2 electrolysis: State of the art, challenges and perspectives
    Chem. Eng. J. 424 (2021) 130501
    doi.org/10.1016/j.cej.2021.130501

    Röhe, M.; Franzen, D.; Kubannek, F.; Ellendorff, B.; Turek, T.; Krewer, U.
    Revealing the Degree and Impact of Inhomogeneous Electrolyte Distributions on Silver Based Gas Diffusion Electrodes
    Electrochim. Acta (2021)
    doi.org/10.1016/j.electacta.2021.138693

    Badie, S. A.; Mager, T.; Mehring, C.
    Simulation of Airless Modulated 2D Small-Scale/MEMS Atomizer using Viscous Potential Theory with Generalized Pressure-Correction
    Atomization and Sprays 31(2):1-35 (2021)
    doi.org/10.1615/AtomizSpr.2020035523

    Franzen, D.; Paulisch, M. C.; Ellendorff, B.; Manke, I.; Turek, T.
    Spatially resolved model of oxygen reduction reaction in silver-based porous gas-diffusion electrodes based on operando measurements
    Electrochimica Acta 375 (2021) 137976
    doi.org/10.1016/j.electacta.2021.137976

    Andronescu, C.; Masa, J.; Tilley, R. D.; Gooding, J. J.; Schuhmann, W.
    Electrocatalysis in confined space
    Current Opinion in Electrochemistry 25 (2021) 100644
    doi.org/10.1016/j.coelec.2020.100644

    Medina, D.; Löffler, T.; Morales, D. M.; Masa, J.; Bobrowski, T.; Barwe, S.; Andronescu, C.; Schuhmann, W.
    Recovering activity of anodically challenged oxygen reduction electrocatalysts by means of reductive potential pulses
    Electrochemistry Communications 124 (2021) 106960
    doi.org/10.1016/j.elecom.2021.106960

    Dieckhöfer, S.; Öhl, D.; Junquiera, J. R. C.; Quast, T.; Turek, T.; Schuhmann, W.
    Probing the local reaction environment during high turnover carbon dioxide reduction with Ag-based gas diffusion electrodes
    Chem. Eur. J. 27 (2021) 5906-5912
    doi.org/10.1002/chem.202100387

  • Kunz, P.; Paulisch, M.; Osenberg, M.; Bischof, B.; Manke, I.; Nieken, U.
    Prediction of Electrolyte Distribution in Technical Gas Diffusion Electrodes: From Imaging to SPH Simulations.
    Transp Porous Med 132, 381–403 (2020)
    doi.org/10.1007/s11242-020-01396-y

    Gebhard, M.; Tichter, T.; Franzen, D.; Paulisch, M.C.; Schutjajew, K.; Turek, T.; Manke, I.; Roth, C.
    Improvement of oxygen-depolarized cathodes in highly alkaline media by electrospinning of poly(vinylidene fluoride) (PVDF) barrier layers
    ChemElectroChem 7 (2020) 830-837
    doi.org/10.1002/celc.201902115

  • Röhe, M.; Botz, A.; Franzen, D.; Kubannek, F.; Ellendorff, B.; Öhl, D.; Schuhmann, W.; Turek, T.; Krewer, U.
    The Key Role of Water Activity for the Operating Behavior and Dynamics of Oxygen Depolarized Cathodes
    ChemElectroChem 6 (2019) 5671-5681
    doi.org/10.1002/celc.201901224

    Paulisch, M.; Gebhard, M.; Franzen, D.; Hilger, A.; Osenberg, M.; Kardjilov, N.; Ellendorff, B.; Turek, T.; Roth, C.; Manke, I.
    Operando Laboratory X-Ray Imaging of Silver-Based Gas Diffusion Electrodes during Oxygen Reduction Reaction in Highly Alkaline Media
    Materials 12(17) (2019) 2686
    doi.org/10.3390/ma12172686

    Madzharova F.; Öhl D.; Junqueira J.; Schuhmann W.; Kneipp J.
    Plasmon enhanced two-photon probing with gold and silver nanovoid structures
    Advanced Optical Materials (2019) 1900650
    doi.org/10.1002/adom.201900650

    Kandaswamy, S.; Sorrentino, A.; Borate, S.; Živković, L.; Petkovska M.; Vidaković-Koch, T.
    Oxygen reduction reaction on silver electrodes under strong alkaline conditions
    Electrochimica Acta 320 (2019)
    doi.org/10.1016/j.electacta.2019.07.028

    Kubannek, F.; Turek, T.; Krewer, U.
    Modeling Oxygen Gas Diffusion Electrodes for Various Technical Applications
    Chemie Ingenieur Technik 91 (2019) 720-733
    doi.org/10.1002/cite.201800181

    Franzen, D.; Ellendorff, B.; Paulisch, M.; Hilger, A.; Osenberg, M; Manke, I.; Turek, T.
    Influence of binder content in silver-based gas diffusion electrodes on pore system and electrochemical performance
    Journal of Applied Electrochemistry 49 (7) (2019) 705-713
    doi.org/10.1007/s10800-019-01311-4

    Gebhard, M.; Paulisch, M.; Hilger, A.; Franzen, D.; Ellendorff, B.; Turek, T.; Manke, I.; Roth, C.
    Design of an In-Operando Cell for X-Ray and Neutron Imaging of Oxygen-Depolarized Cathodes in Chlor-Alkali Electrolysis
    Materials 12(8) (2019) 1275
    doi.org/10.3390/ma12081275

    Kunz P.; Hopp‐Hirschler, M.; Nieken U.
    Simulation of Electrolyte Imbibition in Gas Diffusion Electrodes
    Chemie Ingenieur Technik 91 (2019) 883-888
    doi.org/10.1002/cite.201800202

    Röhe, M.; Kubannek, F.; Krewer, U.
    Processes and their Limitations in Oxygen Depolarized Cathodes: A Dynamic Model-Based Analysis
    ChemSusChem 12 (2019) 2373-2384
    doi.org/10.1002/cssc.201900312

    Öhl, D.; Franzen, D.; Paulisch, M.; Dieckhöfer, S.; Barwe, S.; Andronescu, C.; Manke, I.; Turek, T.; Schuhmann, W.
    Catalytic Reactivation of Industrial Oxygen Depolarized Cathodes by in‐situ Generation of Atomic Hydrogen
    ChemSusChem 12 (2019) 2732-2739
    doi.org/10.1002/cssc.201900628

    Masa, J.; Barwe, S.; Andronescu, C.; Schuhmann, W.
    On the theory of electrolytic dissociation, the greenhouse effect, and activation energy in (electro)catalysis: A tribute to Svante Augustus Arrhenius
    Chem. Eur. J. 25 (2019) 158-166
    doi.org/10.1002/chem.201805264

    Neumann, M.; Osenberg, M.; Hilger, A.; Franzen, D.; Turek, T.; Manke, I.; Schmidt, V.
    On a pluri-Gaussian model for three-phase microstructures, with applications to 3D image data of gas-diffusion electrodes
    Computational Materials Science 156 (2019) 325-331
    doi.org/10.1016/j.commatsci.2018.09.033

  • Öhl, D.; Kayran, Y.U.; Junqueira, J.R.C.; Eßmann, V; Bobrowski, T.; Schuhmann, W
    Optimized Ag Nanovoid Structures for Probing Electrocatalytic Carbon Dioxide Reduction Using Operando Surface-Enhanced Raman Spectroscopy
    Langmuir 34 (2018) 12293-12301
    dx.doi.org/10.1021/acs.langmuir.8b02501

    Wilde, P.; Quast, T.; Barike Aiyappa, H.; Chen, Y.-T.; Botz, A.; Tarnev, T.; Marquitan, M.; Feldhege, S.; Lindner, A.; Andronescu, C.; Schuhmann, W
    Towards reproducible fabrication of nanometre-sized carbon electrodes: optimisation of automated nanoelectrode fabrication by means of transmission electron microscopy
    ChemElectroChem 5 (2018) 3083-3088
    doi.org/10.1002/celc.201800600

    Löffler, T.; Wilde, P.; Öhl, D.; Chen, Y.-T.; Tschulik, K.; Schuhmann, W
    Evaluation of the intrinsic catalytic activity of nanoparticles without prior knowledge of the mass loading
    Faraday Discuss. 210 (2018) 317-332
    dx.doi.org/10.1039/c8fd00029h

    Botz, A.; Clausmeyer, J.; Öhl, D.; Tarnev, T.; Franzen, D.; Turek, T.; Schuhmann, W.
    Local Activities of Hydroxide and Water Determine the Operation of Ag‐Based Oxygen Depolarized Cathodes
    Angew. Chem. Int. Ed. (2018) 12285-12289
    doi.org/10.1002/anie.201807798

    Botz, A.; Clausmeyer, J.; Öhl, D.; Tarnev, T.; Franzen, D.; Turek, T.; Schuhmann, W.
    Die lokalen Aktivitäten von Hydroxidionen und Wasser bestimmen die Funktionsweise von auf Silber basierenden Sauerstoffverzehrkathoden
    Angew. Chem. 130 (2018) 12465-12469
    doi.org/10.1002/ange.201807798

    Kunz, P.; Hassanizadeh, S. M.; Nieken, U.
    A Two-Phase SPH Model for Dynamic Contact Angles Including Fluid–Solid Interactions at the Contact Line
    Transp Porous Med 122 (2018) 253–277
    dx.doi.org/10.1007/s11242-018-1002-9

    Öhl, D.; Clausmeyer, J.; Barwe, S.; Botz, A.; Schuhmann, W.
    Oxygen Reduction Activity and Reversible Deactivation of Single Silver Nanoparticles during Particle Adsorption Events
    ChemElectroChem 5 (2018) 1886-1890
    dx.doi.org/10.1002/celc.201800094

    Sievers, G.; Vidakovic Koch, T.; Walter, C.; Steffen, F.; Jakubith, S.; Kruth, A.; Hermsdorf, D.; Sundmacher, K.; Brüser, V.
    Ultra-low loading Pt-sputtered gas diffusion electrodes for oxygen reduction reaction
    Journal of Applied Electrochemistry 48 (2018) 221-232
    doi.org/10.1007/s10800-018-1149-7

  • Clausmeyer, J.; Botz, A.; Öhl, D.; Schuhmann, W.
    The oxygen reduction reaction at the three-phase boundary: nanoelectrodes modified with Ag nanoclusters
    Faraday Discuss. 193 (2016) 241-250
    dx.doi.org/10.1039/C6FD00101G

    Clausmeyer, J.; Wilde, P.; Ventosa, E.; Tschulik, K.; Schuhmann, W.
    Detection of individual nanoparticle impacts using etched carbon nanoelectrodes
    Electrochem. Commun. 73 (2016) 67-70
    dx.doi.org/10.1016/j.elecom.2016.11.003

  • Schröder, D.; Arlt, T.; Krewer, U.; Manke, I.
    Analyzing Transport Paths in the Air Electrode of a Zinc Air Battery using X-ray Tomography
    Electrochemistry Communications 40 (2014) 88-91
    dx.doi.org/10.1016/j.elecom.2014.01.001

    Zielke, L.; Hutzenlaub, T.; Wheeler, D. R.; Manke, I.; Arlt, T.; Paust, N.; Zengerle, R.; Thiele, S.
    A Combination of X-ray Tomography and Carbon Binder Modeling: Reconstructing the Three Phases of LiCoO2 Li-ion Battery Cathodes
    Advanced Energy Materials 4 (2014) 1301617
    dx.doi.org/10.1002/aenm.201301617

    Vidaković-Koch, T.; Mittal, V. K.; Do, T. Q. N.; Varničić, M.; Sundmacher, K.
    Application of electrochemical impedance spectroscopy for studying of enzyme kinetics
    Electrochimica Acta 110 (2013) 94-104
    dx.doi.org/10.1016/j.electacta.2013.03.026

    Zeradjanin, A. R.; Ventosa, E.; Bondarenko, A. S.; Schuhmann, W.
    Evaluation of the catalytic performance of gas evolving electrodes using local electrochemical noise measurements
    ChemSusChem 5 (2012) 1905-1911
    dx.doi.org/10.1002/cssc.201200262

    Dwenger, S.; Eigenberger, G.; Nieken, U.
    Measurement of Capillary Pressure–Saturation Relationships Under Defined Compression Levels for Gas Diffusion Media of PEM Fuel Cells
    Transport in Porous Media 91 (2012) 281-294
    dx.doi.org/10.1007/s11242-011-9844-4

    Wolz, A.; Zils, S.; Ruch, D.; Kotov, N.; Roth, C.; Michel, M.
    Incorporation of Indium Tin Oxide Nanoparticles in PEMFC Electrodes
    Advanced Energy Materials 2 (2012) 569-574
    dx.doi.org/10.1002/aenm.201100711

    Moussallem, I.; Pinnow, S.; Turek, T.
    Development of high-performance silver-based gas-diffusion electrodes for chlor-alkali electrolysis with oxygen depolarized cathodes
    Chemical Engineering & Processing: Process Intensification 52 (2012) 125-131
    dx.doi.org/10.1016/j.cep.2011.11.003

    Pinnow, S.; Chavan, N.; Turek, T.
    Thin-film flooded agglomerate model for silver-based oxygen depolarized cathodes
    Journal of Applied Electrochemistry 41 (2011) 1053-1064
    dx.doi.org/10.1007/s10800-011-0311-2

    Markötter, H., Manke, I.; Krüger, P.; Haußmann, J.; Klages, M.; Arlt, T.; Riesemeier, H.; Hartnig, C.; Scholta, J.; Banhart, J.
    Investigation of 3D water transport paths in gas diffusion layers by combined in-situ X-ray radiography and tomography
    Electrochemistry Communications 13 (2011) 1001-1004
    dx.doi.org/10.1016/j.elecom.2011.06.023

    Keller, F.; Nieken, U.
    Application of Smoothed Particle Hydrodynamics to Structure Formation in Chemical Engineering, Meshfree Methods for Partial Differential Equations V
    dx.doi.org/10.1007/978-3-642-16229-9_8